Inexact scalarization proximal methods for multiobjective quasiconvex minimization on Hadamard manifolds
نویسنده
چکیده
In this paper we extend naturally the scalarization proximal point method to solve multiobjective unconstrained minimization problems, proposed by Apolinario et al.[1], from Euclidean spaces to Hadamard manifolds for locally Lipschitz and quasiconvex vector objective functions. Moreover, we present a convergence analysis, under some mild assumptions on the multiobjective function, for two inexact variants of the scalarization proximal point algorithm for this kind of functions. In this sense, strong convergence of all the sequences produced by the methods are obtained. Indeed, each accumulation point, of any sequence generated by these algorithm, is a Pareto critical point for the multiobjective function.
منابع مشابه
A scalarization proximal point method for quasiconvex multiobjective minimization
In this paper we propose a scalarization proximal point method to solve multiobjective unconstrained minimization problems with locally Lipschitz and quasiconvex vector functions. We prove, under natural assumptions, that the sequence generated by the method is well defined and converges globally to a Pareto-Clarke critical point. Our method may be seen as an extension, for the non convex case,...
متن کاملProximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds
This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the full conve...
متن کاملProximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds
This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasi...
متن کاملAn inexact proximal method for quasiconvex minimization
In this paper we propose an inexact proximal point method to solve constrained minimization problems with locally Lipschitz quasiconvex objective functions. Assuming that the function is also bounded from below, lower semicontinuous and using proximal distances, we show that the sequence generated for the method converges to a stationary point of the problem.
متن کاملProximal Point Algorithm for Quasi-convex Minimization Problems in Metric Spaces
In this paper, the proximal point algorithm for quasi-convex minimization problem in nonpositive curvature metric spaces is studied. We prove ∆-convergence of the generated sequence to a critical point (which is defined in the text) of an objective convex, proper and lower semicontinuous function with at least a minimum point as well as some strong convergence results to a minimum point with so...
متن کامل